If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9v^2-3v-23=0
a = 9; b = -3; c = -23;
Δ = b2-4ac
Δ = -32-4·9·(-23)
Δ = 837
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{837}=\sqrt{9*93}=\sqrt{9}*\sqrt{93}=3\sqrt{93}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{93}}{2*9}=\frac{3-3\sqrt{93}}{18} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{93}}{2*9}=\frac{3+3\sqrt{93}}{18} $
| X+6x+3x=80 | | G(x)=(9x)/(x-4) | | 2x+4=2x-9+x=180 | | 3*(2-x)+5=-2(2x+3)-12 | | -7x-1.7=-9-0.9 | | 9C62-3v-23=0 | | 2x+4=2x-92=180 | | 5−4+7x+1= | | (x-3)^2-2=2 | | 1n(-2n-9)=(-n-2) | | 2x+23=4x+5 | | 133=7(5+6n) | | 5(n+2)-6=54 | | p+12/p=6 | | -2(7+8x)=-110 | | 6(x-3)=3(x-4) | | -3(2n+4)=-48 | | 7(2-z)+5(z+3)/1-4z=3/5 | | 2^(2x+3)-25(2^x)+3=0 | | 5m÷8-6÷8+3m=2 | | 2^2x+3-25(2^x)+3=0 | | 5m÷8=2÷8 | | 25(2^x)=3 | | -6n+2(-5+4n)=-4(n+1 | | 7/4x+2/5=-2/8x | | 4-x^2=x^2-4 | | 5/y=5 | | 2x+26=12x | | g-1=15-5 | | 2/3n-7=7 | | (x+6)/2(0.75)=9.5 | | 2^4x+1=8^x-5 |